
High Sensitivity Integrated Visible to Mid-Infrared Nonlinear Plasmonic Sensor
Author(s) -
F. Che,
S. A. Ponomarenko,
M. Cada,
N. Nguyen-Huu
Publication year - 2017
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2017.2709808
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
We propose a Kretschmann-based nonlinear plasmonic sensor with a gold thin film deposited on a glass prism. Visible and mid-infrared signals are generated in this configuration through the nonlinear processes of sum- and difference-frequency generation, respectively. The calculated maximum sensitivity and figure of merit of our sum-frequency-based sensor is an order of magnitude higher than that of a traditional Kretschmann-based sensor in the visible range. Our difference-frequency-based sensor has a maximum sensitivity of 1.0 × 106 nm/RIU in air at 4.29 μm, which is three orders of magnitude higher than that of existing devices in the mid-infrared range, with its maximum figure of merit almost two orders of magnitude higher than the alternatives. By comparison, the calculated sensitivity for operation in water for both sum- and difference-frequency is about half that in air. We, thus, demonstrate significant gains in the sensitivity of the well-known Kretschmann-based plasmonic sensor over a wide wavelength range, without modifying the physical sensor, but by exploiting and simply taping the nonlinear optical properties of the system.