z-logo
open-access-imgOpen Access
Photonic Generation of Frequency and Bandwidth Multiplying Dual-Chirp Microwave Waveform
Author(s) -
Xuan Li,
Shanghong Zhao,
Zihang Zhu,
Kun Qu,
Tao Lin,
Dapeng Hu
Publication year - 2017
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2017.2705042
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
A photonic approach to generate a frequency and bandwidth multiplying dual-chirp microwave waveform using a single dual-polarization quadrature phase shift keying (DP-QPSK) modulator is proposed and demonstrated. In the proposed scheme, an RF carrier is applied to one QPSK modulator and a baseband single-chirp waveform is applied to another. By setting the driving signals applied to the modulator and adjusting the dc bias phases in the modulator, high-order optical sidebands can be obtained with the optical carrier suppressed. After optical to electrical conversion, a frequency-doubling and bandwidth-quadrupling, or frequency-quadrupling and bandwidth-octupling dual-chirp microwave can be generated. The approach is verified by simulation. Dual-chirp microwave waveforms with 16-GHz central frequency, 2048-MHz bandwidth and 32-GHz central frequency, 4096-MHz bandwidth are generated through an 8-GHz RF carrier and 512-MHz bandwidth baseband signal. The generated dual-chirp microwave waveform can be used in a radar system to improve its range-Doppler resolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here