
Transmissive Refractive Index Sensing Based on Frequency-Sensitive Responses of Two-Dimensional Photonic Crystals
Author(s) -
Xulin Lin,
Haiwen Fang,
Lin Wang,
Guo Ping Wang,
Xunya Jiang
Publication year - 2016
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2016.2615283
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
In this paper, we propose a new scheme of refractive index (RI) sensing, which utilizes frequency-sensitive responses of 2-D photonic crystals. Specifically, the 2-D photonics crystals consist of dielectric rods arranged in rectangular lattice and support frequency-sensitive supercollimation (SC). Small changes in ambient RI are sensed by measuring transmission rate of a narrow spectral source. This RI sensing scheme exploits the sensitive dispersion properties around the SC frequency: Both reflection and beam diffraction are enhanced in response to a slight increase of ambient RI. Operation and performance of the transmissive RI sensing are demonstrated by finite-difference time-domain (FDTD) simulations. The major advantage of our design is that all the essential components can be compactly integrated, which makes it attractive for a number of applications, such as hand-held equipment and distributed sensor networks.