z-logo
open-access-imgOpen Access
Divided-Pulse Nonlinear Amplification at 1.5 μm
Author(s) -
Qiang Hao,
Yunfeng Wang,
Tingting Liu,
Hong Hu,
Heping Zeng
Publication year - 2016
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2016.2603233
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
Divided-pulse nonlinear amplification was developed in the anomalous dispersion regime by combining the concepts of divided-pulse nonlinear amplification and divided-pulse compression. We realized compressor-free ultrafast pulse amplifiers at 1.5 μm with the help of simultaneous pulse amplification and compression in single-mode and few-mode fibers with anomalous dispersion. With optimized positive prechirping on the seed pulse, the interplay between the dispersive and nonlinear effects was controlled to get transform-limited soliton replicas. Experiments, as well as numerical simulations, demonstrated that ~0.75 nJ per replica was the optimized results in the 12/130 Er-Yb codoped fiber. By polarization-division multiplexing 32 replicas, transform-limited pulse with 126-fs duration, 20.3-nJ pulse energy, and 80-MHz repetition rate was generated from a few-mode Er-Yb codoped fiber. Furthermore, limitations on the coherent combining efficiency are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here