
Spectrally Fragmented Electrical Dispersion Compensation for High-Speed Microstrip Traces in Data Centers Connections
Author(s) -
Yanir London,
Dan Sadot
Publication year - 2016
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2016.2547318
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
The frequency-dependent dispersion impairment of high-speed printed analog traces in next-generation pluggable modules is studied. This frequency dependence is considered for the first time in optical fiber communication systems. Transmission of ultra-broadband electrical signals over such traces dramatically enhances the frequency-dependent dispersion effect. Here, for the first time, an extended model of the ultrabroadband signal transmission that includes this frequency-dependent dispersion effect of the printed analog traces is proposed. Additionally, a novel approach to compensate for this frequency-dependent dispersion impairment is introduced. Inclusive analysis reveals that a significant performance improvement of up to 4 dB is achieved by using the proposed symbol-spaced sampling and reduced-complexity digital signal processing technique.