z-logo
open-access-imgOpen Access
W-Band Millimeter-Wave Vector Signal Generation Based on Precoding-Assisted Random Photonic Frequency Tripling Scheme Enabled by Phase Modulator
Author(s) -
Xinying Li,
Yuming Xu,
Jiangnan Xiao,
Jianjun Yu
Publication year - 2016
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2016.2535203
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
We propose W-band photonic millimeter-wave (mm-wave) vector signal generation employing a precoding-assisted random frequency tripling scheme enabled by a single phase modulator cascaded with a wavelength selective switch (WSS). The selected two optical subcarriers from the phase modulator output by the WSS can have several different kinds of combinations with asymmetrical orders, such as (−3, 0), (−2, 1), (−1, 2), and (0, 3). Employing our proposed precoding-assisted random frequency tripling scheme, we experimentally demonstrate 1/2-Gbd 81-GHz quadrature-phase-shift-keying (QPSK) mm-wave vector signal generation and its wireless delivery over 0.5-m air space distance. We also experimentally demonstrate that the generated mm-wave vector signal based on the minus second-order (−2nd) and first-order (1st) subcarriers, which is equivalent to that based on the minus first-order (−1st) and second-order (2nd) subcarriers, has a better bit-error-ratio (BER) performance than that based on the minus third-order (−3rd) and central (0th) subcarriers, which is equivalent to that based on the 0th and third-order (−3rd) subcarriers, when the phase modulator has a relatively small driving radio-frequency (RF) voltage, whereas an opposite result occurs when the phase modulator has a relatively large driving RF voltage, which is consistent with both our theoretical analysis and numerical simulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here