
Near-Infrared Multichannel Filter in a Finite Semiconductor Metamaterial Photonic Crystal
Author(s) -
Meng-Ru Wu,
Jia-Ren Chang Chien,
Chien-Jang Wu,
Shoou-Jinn Chang
Publication year - 2016
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2016.2517566
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
A near-infrared (NIR) multichannel filter based on the use of a finite 1-D semiconductor metamaterial (MTM) photonic crystal (PC) is proposed. We consider a PC air/(AB)N/air, where N is the stack number, A is a dielectric layer, and B is a semiconductor MTM made of Al-doped ZnO (AZO) and ZnO. Resonant transmission peaks can be found in the frequency region where the permittivity of AZO/ZnO is negative. It is found that the channel number is equal to N - 1 for a given N and that resonant channels are located in a passband of the photonic band structure. Additionally, the channel positions are tunable, i.e., they can be tuned by the thicknesses of A and B, the filling factor of AZO, and the incidence angle as well. The design of NIR tunable multichannel filter is of technical use for semiconductor optoelectronics.