
Photonic Microcantilevers With Interferometric Bragg Grating Interrogation
Author(s) -
Lewis G. Carpenter,
Christopher Holmes,
Benjamin D. Snow,
James C. Gates,
Peter G. R. Smith
Publication year - 2012
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2012.2210396
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
Germanosilicate glass microcantilevers are fabricated featuring an integrated Fabry-Pérot interferometer. Direct UV writing of single-mode planar waveguides and Bragg gratings is combined with physical micromachining, using a precision dicing saw, to realize glass microcantilevers on a silicon platform. The device presented here has a wavelength shift force sensitivity of 330 nm/N, which is calibrated using a surface profilometer measurement and is an order of magnitude better than current state-of-the-art Bragg-grating-based sensors. The device also shows an approximately tenfold increase in amplitude modulation compared with a similar device architecture utilizing a single Gaussian-apodized Bragg grating. By forming the Fabry-Pérot cavity around the point of greatest strain, we reduce the unwanted effects of grating chirp as the cantilever is deflected and relate the performance to a mechanical model that relates cavity phase shift to deflection.