z-logo
open-access-imgOpen Access
On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission
Author(s) -
Ivan B. Djordjevic,
Tao Liu,
Lei Xu,
Ting Wang
Publication year - 2012
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2012.2208623
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
In this paper, we propose an algorithm to determine the -dimensional optimum signal constellation design (DD-OSCD), in minimum mean-square error sense, for channel capacity achieving source distribution. We then describe a -dimensional coded modulation scheme, employing orbital angular momentum modes, two polarization states, and two in-phase/quadrature coordinates, suitable for use in future few-mode fiber (FMF) applications. Monte Carlo simulations indicate that the proposed low-density parity-check (LDPC)-coded polarization-division-multiplexed (PDM) quadrature-multiplexed (QM) DD-OSCD significantly outperforms conventional PDM-QAM (by 4.32 dB for 64-ary 3-D constellation at a BER of ). In addition, the DD-OSCD outperforms sphere packing constellations (by 0.33 dB for 8-ary 3-D constellation at a BER of ).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here