z-logo
open-access-imgOpen Access
Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits
Author(s) -
Yu-Ru Huang,
Hung-Pin Chen,
Pei-Chin Chiu,
Jen-Inn Chyi,
Bing-Hsiao Wang,
Shih-Yuan Chen,
Chi-Kuang Sun
Publication year - 2012
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2012.2195484
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
This paper investigates terahertz (THz) wave propagation, resonance, and radiation on a THz optoelectronic integrated circuit (THz-OEIC). An efficient THz resonant radiation from 0.6 to 0.7 THz can be achieved with a newly designed 2-D open-ended rampart slot array antenna. A monolithically integrated circuit is fabricated on a localized THz resonant cavity, which not only provides a robust base for postdevice processes but also helps collect and reradiate the fleeing surface waves to enhance radiation efficiency. When using a THz time-domain spectroscopy (THz-TDS) technique and a time-frequency analysis, the radiated THz waveform shows a good time-frequency correlation to the circuit design of our THz-OEIC. In addition, an optical-to-THz per-pulse conversion efficiency of 6.41 × 10-3 can be achieved by a localized THz resonant cavity design. The enhanced optical-to-THz per-pulse conversion efficiency and THz propagation, resonance, and radiation behavior revealed not only help to understand the on-chip THz transmission phenomena but provide a good potentiality for a THz-OEIC design to be applied in low power-consuming microfluidic-channel-based THz biosensing chips as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here