
Laser Parameter Variations in a Rayleigh Scattering-Based Raman Fiber Laser With Single Fiber Bragg Grating Reflector
Author(s) -
A. R. Sarmani,
M. H. Abu Bakar,
F. R. Mahamd Adikan,
M. A. Mahdi
Publication year - 2012
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2012.2190925
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
The work presented in this paper details the changes in continuous-wave laser characteristics that were affected by the orientation of pumping separation. The Raman laser was constructed in forward and backward pumping schemes with respect to the 1553.3-nm fiber Bragg grating location. The laser cavity was formed by the induction of Rayleigh backscattering effects in the 51-km fiber length that served as a virtual mirror. From the results obtained, it can be concluded that low threshold operation around 788 mW was satisfied at a coupling ratio of 0 (forward pumping scheme). Moreover, the best output power attainment of 220 mW was realized when 60% of pump powers were delivered via a backward pumping scheme. Thus, the success of this research provides a basis to further understand the principle of backscattered wave interactions along the fiber longitudinal structure.