z-logo
open-access-imgOpen Access
Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method
Author(s) -
Nourallah Ghaeminezhad,
Shuang Cong
Publication year - 2018
Publication title -
ieee/caa journal of automatica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.277
H-Index - 41
eISSN - 2329-9274
pISSN - 2329-9266
DOI - 10.1109/jas.2018.7511084
Subject(s) - computing and processing , communication, networking and broadcast technologies , general topics for engineers , robotics and control systems
In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation. Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom