z-logo
open-access-imgOpen Access
Gini coefficient-based task allocation for multi-robot systems with limited energy resources
Author(s) -
Danfeng Wu,
Guangping Zeng,
Lingguo Meng,
Weijian Zhou,
Linmin Li
Publication year - 2017
Publication title -
ieee/caa journal of automatica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.277
H-Index - 41
eISSN - 2329-9274
pISSN - 2329-9266
DOI - 10.1109/jas.2017.7510385
Subject(s) - computing and processing , communication, networking and broadcast technologies , general topics for engineers , robotics and control systems
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption, we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method, which can flexibly optimize the task completion number and the resource consumption according to the application contexts. Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom