z-logo
open-access-imgOpen Access
Implementation of a Bidirectional 400V-800V Wireless EV Charging System
Author(s) -
Sen-Tung Wu,
Yu-Wei Chiu
Publication year - 2024
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2024.3366997
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
A non-contact isolated bidirectional symmetrical resonant converter with dual active bridge as the main structure is proposed in this study. This scheme is combined with the symmetrical resonant network and integrated into an isolated bidirectional symmetrical resonant conversion circuit. The symmetrical resonance technique is used in this work to realize the voltage regulation of a wide range of output and the function of soft switching under the appropriate operating frequency; reduce the electromagnetic noise and power loss caused by hard switching of power switches in the circuit; and improve the overall converter efficiency, voltage regulation, and hard switching from conventional bidirectional converters. In addition, a pair of non-contact loosely coupled inductors (wireless coils) is used to replace the conventional transformer to transfer the bidirectional energy wirelessly. The digital signal processor TMS320F28335 is the control core of the system in this study. The proposed converter with DC grid input voltage is set to 400 V, and the EV battery side is set to 670–800 V. The rated power capacity of the bidirectional wireless charger is 2 kW. Finally, the maximum efficiency of forward charging mode (grid to vehicle [G2V; 400 V charge to 800 V]) can reach 90.2% while that of reverse discharging mode (vehicle to grid [V2G; 800V discharge to 400V]) can reach 91.4%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here