z-logo
open-access-imgOpen Access
Recurrent Large Kernel Attention Network for Efficient Single Infrared Image Super-Resolution
Author(s) -
Gangping Liu,
ShuaiJun Zhou,
Xiaxu Chen,
Wenjie Yue,
Jun Ke
Publication year - 2023
Publication title -
ieee access
Language(s) - English
Resource type - Journals
ISSN - 2169-3536
DOI - 10.1109/access.2023.3344830
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Infrared imaging has broad and important applications. However, the infrared detector manufacture technique limits the detector resolution and the resolution of infrared images. In this work, we design a Recurrent Large Kernel Attention Neural Network (RLKA-Net) for single infrared image super-resolution(SR), and then demonstrate its superior performance. Compared to other SR networks, RLKA-Net is a lightweight network capable of extracting spatial and temporal features from infrared images. To extract spatial features, we use multiple stacked Recurrent Learning Units (RLUs) to expand the network’s receptive field, while the large kernel attention mechanism in RLUs is used to obtain attention maps at various granularity. To extract temporal features, RLKA-Net uses the recurrent learning strategy to keep persistent memory of extracted features, which contribute to more precise reconstruction results. Moreover, RLKA-Net employs an Attention Gate (AG) to reduce the number of parameters and expedite the training process. We demonstrate the efficacy of the Recurrent Learning Stages (RLS), Large Kernel Attention Block (LKAB), and Attention Gate mechanisms through ablation studies. We test RLKA-Net on several infrared image datasets. The experimental results demonstrate that RLKA-Net presents state-of-the-art performance compared to existing SR models. The code and models are available at https://github.com/ZedFm/RLKA-Net.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here