z-logo
open-access-imgOpen Access
Homologous Anatomical-based Facial-Metrics Application to Down Syndrome Face Recognition
Author(s) -
Olalekan Agbolade,
Azree Nazri,
Razali Yaakob,
Yoke Kqueen Cheah
Publication year - 2023
Publication title -
ieee access
Language(s) - English
Resource type - Journals
ISSN - 2169-3536
DOI - 10.1109/access.2023.3317889
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Down syndrome (DS) is one of the prominent neuro-developmental diseases which are distinguished by atypical fractionation behaviors, physical traits, and other mental disabilities. Current techniques of recognizing the syndrome need genetic testing through clinical studies, which is usually expensive and challenging to get. In order to simplify the classification approach, computer-aided facial analysis methods incorporating machine learning and morphometrics are crucial. Thus, this study proposes Homologous Anatomical-based Histogram of Oriented Gradients plus Support Vector Machine (HAB-HOG/ SVM) to automatically detects and extracts 74 homologous facial landmarks from the subjects (DS patient and healthy control) face image and Chord-Transformed Principal Components (CT-PC) as features extraction method for classification. The novelty of this method relies on the automatic acquisition of landmark data which is conceptually simple, robust, computationally efficient, and annotation error-free and the feature extraction technique applies which is simplified enough to follow. The experiment reports recognition accuracy of 56.82% and 98.86% for Classical Principal Components (CPC) and Chord-Transformed PC, respectively. The results demonstrate that the suggested method outperformed not only the CPC but also the previously presented state-of-the-art methods in the domain of DS face recognition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here