z-logo
open-access-imgOpen Access
Monolithically fabricated waveguide for efficient guiding and emission of visible light for IoT applications
Author(s) -
Hyun Jin Jung,
Ui Seok Jung,
Byung Chul Lee,
Soo Jin Kim
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3231457
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
We present monolithically integrated waveguide with thin isolated layers of dielectric material, which ensure efficient emission of guided light in multiple optical windows. The proposed waveguide is fabricated by using silicon oxynitride (SiON) which functions as the core guiding layer, and silicon nitride (SiN) which facilitates effective vertical emission of guided light via optical windows. The theoretical operating principle is analyzed by Finite-Difference-Time-Domain (FDTD) simulation, and the experimentally fabricated device is demonstrated to find the expected operation trend by measuring vertical emission of light through the optical windows. We further find that the physical origin of such efficient emission stems from the Fabry-Perot resonance induced laterally at the interface between the optical windows and cladding layers, which leads to the strong emission of light at the edge of optical windows. The output efficiencies of light emission from SiN optical windows, which are fabricated in cascaded fashion on top of the SiON waveguide, are 30, 45 and 55 percent at the wavelength of 457, 532, and 637 nm, respectively. The proposed design concept can be applied to various potential applications including optical integrated circuits with vertical interconnection, optical emission in wearable devices for virtual and augmented reality, and other emerging optical sensors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here