z-logo
open-access-imgOpen Access
CNN-Based Copy-Move Forgery Detection Using Rotation-Invariant Wavelet Feature
Author(s) -
Sang In Lee,
Jun Young Park,
Il Kyu Eom
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3212069
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper introduces a machine learning based copy-move forgery (CMF) localization method. The basic convolutional neural network cannot be applied to CMF detection because CMF frequently involves rotation transformation. Therefore, we propose a rotation-invariant feature based on the root-mean squared energy using high-frequency wavelet coefficients. Instead of using three color image channels, two-scale energy features and low-frequency subband image are fed into the conventional VGG16 network. A correlation module is used by employing small feature patches generated by the VGG16 network to obtain the possible copied and moved patch pairs. The all-to-all similarity score is computed using the correlation module. To generate the final binary localization map, a simplified mask decoder module is introduced, which is composed of two simple bilinear upsampling and two batch-normalized-inception-based mask deconvolution followed by bilinear upsampling. We perform experiments on four test datasets and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here