z-logo
open-access-imgOpen Access
Privacy Protection in Surveillance Videos Using Block Scrambling-Based Encryption and DCNN-Based Face Detection
Author(s) -
Khalid M. Hosny,
Mohamed A. Zaki,
Hanaa M. Hamza,
Mostafa M. Fouda,
Nabil A. Lashin
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3211657
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Surely surveillance cameras are certainly important in all aspects of life. We have become in an era where we need to use surveillance cameras everywhere, homes, schools, banks, hospitals, and companies, even in the general streets, to monitor everything that happens and follow the progress of those places with all safety by surveillance videos. However, the pervasiveness of surveillance cameras has become an issue for people’s privacy. This paper proposes a novel method for surveillance video privacy protection using block scrambling-based encryption and DCNN-based object detection. An object detection model based on DCNN You Only Look Once version 3 (YOLOv3) is used to detect the faces of the people. Then, the detected faces are scrambled using the fast block scrambling technique. Finally, the scrambled faces are encrypted using a secret key produced from a chaotic logistic map. The bounding boxes that output from the YOLOv3 are modified to include the entire edges of the detected faces to prevent any leaks of the sensitive regions. The simulation results and security analysis confirmed the proposed method’s effectiveness in protecting the surveillance videos’ privacy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here