
On Collective Intellect for Task Offloading in Vehicular Fog Paradigm
Author(s) -
Balawal Shabir,
Anis U. Rahman,
Asad Waqar Malik,
Muazzam A. Khan
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3208243
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
A vehicular fog network is an emerging paradigm adopted to facilitate delay-sensitive and innovative applications. Since vehicular environments are inherently dynamic, it becomes a challenge to effectively utilize all available resources. Often a centralized resource distribution model is adopted for effective resource utilization but this comes with significant overhead. Thus, a distributed model seems more suited for highly dynamic vehicular environments; however, a distributed model without collective intelligence can end up in uneven workload distribution. In this paper, we propose a distributed non-cooperative task offloading framework for efficient resource utilization. Here, vehicles with heterogeneous task requirements interact with one another without directly influencing the actions of the neighboring vehicles. That is, the framework allows vehicles to communicate with neighbors to gather contextual information to revisit their offloading decisions. The shared information includes resource type, task residence time, system cost, and offloading inference. The effectiveness of the framework is evaluated against baseline schemes in terms of service delay, transmission delay, system cost, delivery rate, and system efficiency. The results demonstrate significantly reduced task residence times by 50%, highest throughput at 83 Mbits/s, which in turn contributes to an improved system utilization up to 70% across the resource-sharing network.