z-logo
open-access-imgOpen Access
A Comprehensive Review of Deep Learning-Based Methods for COVID-19 Detection Using Chest X-Ray Images
Author(s) -
Saeed S. Alahmari,
Baderaldeen Altazi,
Jisoo Hwang,
Samuel Hawkins,
Tawfiq Salem
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3208138
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The novel coronavirus disease 2019 (COVID-19) added tremendous pressure on healthcare services worldwide. COVID-19 early detection is of the utmost importance to control the spread of the coronavirus pandemic and to reduce pressure on health services. There have been many approaches to detect COVID-19; the most commonly used one is the nasal swab technique. Before that was available chest X-ray radiographs were used. X-ray radiographs are a primary care method to reveal lung infections, which allows physicians to assess and plan a course of treatment. X-ray machines are prevalent, which makes this method a preferable first approach for the detection of new diseases. However, this method requires a radiologist to assess each chest X-ray image. Therefore, different automated methods using machine learning techniques have been proposed to assist in speeding up diagnoses and improving the decision-making process. In this paper, we review deep learning approaches for COVID-19 detection using chest X-ray images. We found that the majority of deep learning approaches for COVID-19 detection use transfer learning. A discussion of the limitations and challenges of deep learning in radiography images is presented. Finally, we provide potential improvements for higher accuracy and generalisability when using deep learning models for COVID-19 detection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here