
Power-Hardware-in-the-Loop Emulation of the Low-Frequency Oscillation Phenomenon in AC Railway Networks
Author(s) -
Frutos-Galarza Paul,
Juan M. Guerrero,
Iker Muniategui-Aspiazu,
Iban Vicente-Makazaga,
Aitor Endemano-Isasi,
David Ortega-Rodriguez,
Fernando Briz
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3198945
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Dynamic interactions among the AC railway traction network and power electronics converters feeding the trains have been reported to cause low-frequency oscillations (LFO) of the catenary voltage and current. This can result in railway system instability, eventually leading to a power outage and the shutdown of the train traffic. To avoid LFO, control of train power electronic converters must be properly designed and tuned. Experimental verification of control performance regarding the LFO phenomenon in the railway traction network is not easy. Alternatively, the railway traction network can be emulated using a power electronic converter, which would feed the train power converter under test. This paper addresses the design of a network emulator able to reproduce the dynamic behavior of the actual network at low frequencies, including LFO. Three different options will be considered for the network emulator. Their performance will be studied first by means of simulations. Finally, the selected solution will be verified on a downscale test bench.