z-logo
open-access-imgOpen Access
MLOps: A Taxonomy and a Methodology
Author(s) -
Matteo Testi,
Matteo Ballabio,
Emanuele Frontoni,
Giulio Iannello,
Sara Moccia,
Paolo Soda,
Gennaro Vessio
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3181730
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Over the past few decades, the substantial growth in enterprise-data availability and the advancements in Artificial Intelligence (AI) have allowed companies to solve real-world problems using Machine Learning (ML). ML Operations (MLOps) represents an effective strategy for bringing ML models from academic resources to useful tools for solving problems in the corporate world. The current literature on MLOps is still mostly disconnected and sporadic. In this work, we review the existing scientific literature and we propose a taxonomy for clustering research papers on MLOps. In addition, we present methodologies and operations aimed at defining an ML pipeline to simplify the release of ML applications in the industry. The pipeline is based on ten steps: business problem understanding, data acquisition, ML methodology, ML training & testing, continuous integration, continuous delivery, continuous training, continuous monitoring, explainability, and sustainability. The scientific and business interest and the impact of MLOps have grown significantly over the past years: the definition of a clear and standardized methodology for conducting MLOps projects is the main contribution of this paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here