z-logo
open-access-imgOpen Access
Ultra-Miniaturized Antenna for Deeply Implanted Biomedical Devices
Author(s) -
Naeem Abbas,
Abdul Basir,
Amjad Iqbal,
Muhammad Yousaf,
Adeel Akram,
Hyoungsuk Yoo
Publication year - 2022
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2022.3176720
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
A small antenna system plays a vital role in wireless communication and monitoring of key-signs through information collected by implantable devices. Therefore, this study presents an ultra-miniaturized antenna for deeply medical implants, operating at 2.45 GHz industrial, scientific, and medical (ISM) band. To achieve a miniaturized geometry, slotted ground plane and patch, a thin substrate, and a superstrate are used. A liquid crystalline polymer material (Rogers ULTRALAM; tan $\delta =0.0025$ and $\epsilon _{r} =2.9$ ) is used as the substrate and superstrate. The proposed antenna has a surface area of 6 $\times $ 6.5 mm2 and a thickness of 0.2 mm. A realistic device-like environment and analysis in different implantation (homogeneous and heterogeneous + in different organs) sites are used to check and extend the applicability in realistic multiple implanted applications. To ensure the reliability of the communication, link budget is analyzed, which shows that the antenna can successfully communicates up to twenty meters. The proposed antenna has an impedance (10-dB) bandwidth of 480 MHz and peak realized gain of −16.5 dBi in homogeneous phantom. Further, to check the compliance with IEEE C905.1-2005 safety limits, the specific absorption rate is analyzed and found 185.56, 170.24, 134.5, and 124.2 W/kg., which limits with the radiated powers of the antenna to 9.21, 8.56, 10.54, and 12.48 mW in small intestine, large intestine, stomach, and heart, respectively. Finally, the antenna is fabricated and performed in-vitro measurements by placing the integrated antenna inside minced pork. The measured results confirm the trends of the simulated results. The proposed antenna exhibits quasi-omnidirectional radiation patterns in both planes. The analysis confirm that the proposed antenna is suitable for deeply implanted biomedical devices such as leadless pacemakers and wireless capsule endoscopes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here