
Design and Optimization of a Hybrid Excitation System for Magnetically Driven Rotating DC Arc Plasma Generators
Author(s) -
Xiaowen Xu,
Zhuoxiang Ren,
Shiyou Yang
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3128583
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
To eliminate the disadvantages of both the uncontrollability in the magnetic field of a permanent magnet excitation system and the high energy consumption of an electric excitation system in a traditional magnetically rotating arc plasma generator, a novel topology of a hybrid permanent magnet and electrically excited coil system is proposed. The proposed system will generate a large enough magnetic field to drive the arc rotation with a minimum consumption of materials and electric energy in the normal operation duty, and will guarantee a nearly zero magnetic field in the arc triggering stage. To optimize the hybrid excitation system, a comprehensive analysis and an optimization methodology; by combining finite element analysis, the moving the least squares approximation and an adaptive weighted particle swarm optimization, are proposed. Finally, a prototype hybrid excitation system is optimized with promising results in views of both saving a huge amount of electric power consumptions and ensuring a nearly zero magnetic field in the arc triggering.