
Performance Analysis of LSTMs for Daily Individual EV Charging Behavior Prediction
Author(s) -
Ahmed S. Khwaja,
Bala Venkatesh,
Alagan Anpalagan
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3128491
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
In this paper, we evaluate and analyze the performance of long short-term memory networks (LSTMs) for individual electric vehicle (EV) charging behavior prediction over the next day. The charging behavior consists of the charging duration level within a certain upper and lower range, the time slots in which charging will take place, the number of times charging will take place in each time slot, and whether the next day will be a charging day or not. Unlike existing work, we evaluate the behavior prediction performance for increasing resolutions of charging duration levels and charging time slots, using varying lengths of training data. The performance of the proposed approach is validated using real EV charging data, and comparison with other machine learning methods shows its generally superior prediction accuracy for all resolutions. We show that the best performance is achieved when around 8–10 months of data are used as training data. It is also shown that although the performance of the LSTMs degrades with increasing resolution, the performance for charging time slot prediction is affected less compared to that for charging duration prediction. We further propose, analyze and evaluate a new technique that improves the charging duration prediction performance.