z-logo
open-access-imgOpen Access
Measurement-Based Electric Arc Furnace Model Using Ellipse Formula
Author(s) -
Choongman Lee,
Heejin Kim,
Eun-Jae Lee,
Seung-Taek Baek,
Jae Woong Shim
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3127533
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper proposes a mathematical model of an electric arc furnace (EAF) system based on the voltage and current (V–I) field data. The proposed method is formulated using the ellipse equation, which is derived from the measurement profile of real EAF systems. This paper also presents the harmonics and power-pattern information corresponding to the smelting processes (boring, melting, and refining) in order to realistically design an EAF for potential industrial applications. The third harmonic component significantly affects the shape of the V–I curve in realistic EAF systems, while the periodic power fluctuation is closely associated with the size of the ellipse. These characteristics can be formulated and designed by the proposed method, and even in the absence of the V–I profile, an EAF model can be generated using the generalized information provided in this paper. The electrical phenomenon in the proposed method is mathematically verified using the PSCAD/EMTDC software.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here