z-logo
open-access-imgOpen Access
A Stereo SLAM System With Dense Mapping
Author(s) -
Ben Zhang,
Denglin Zhu
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3126837
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The development of simultaneous localization and mapping (SLAM) technology plays an important role in robot navigation and autonomous vehicle innovation. The ORB-SLAM2 is a unified SLAM solution for monocular, binocular, and RGBD cameras which constructs a sparse feature point map for real-time positioning. However, a sparse map based approach cannot effectively meet the requirements of robot navigation, environment reconstruction, and other tasks. In this paper, a dense mapping thread is added to the existing ORB-SLAM2 system. The depth map and color image obtained by the stereo matching of a binocular camera are used to generate a three-dimensional point cloud for keyframes; then, the point cloud is fused by tracking and optimizing the motion track of a feature frame to obtain a real-time point cloud map. Through the experiments conducted on the KITTI dataset and the real environment under the ROS, it is proved that the proposed system constructs a clear three-dimensional point cloud map while constructing an accurate trajectory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here