z-logo
open-access-imgOpen Access
A Novel Hybrid Neural Network-Based Day-Ahead Wind Speed Forecasting Technique
Author(s) -
Mehdi Abbasipour,
Mosayeb Afshari Igder,
Xiaodong Liang
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3126747
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
As a dominant form of renewable energy sources with significant technical progress over the past decades, wind power is increasingly integrated into power grids. Wind is chaotic, random and irregular. For proper planning and operation of power systems with high wind power penetration, accurate wind speed forecasting is essential. In this paper, a novel hybrid Neural Network (NN)-based day-ahead (24 hour horizon) wind speed forecasting is proposed, where five hybrid neural network algorithms are evaluated. The five algorithms include Wavelet Neural Network (WNN) trained by Improved Clonal Selection Algorithm (ICSA), WNN trained by Particle Swarm Optimization (PSO), Extreme Learning Machine (ELM)-based neural network, Radial Basis Function (RBF) neural network, and Multi-Layer Perceptron (MLP) Neural Network. Single- and multi-features and their effect on the accuracy of wind speed prediction are also analyzed. The wind speed dataset used in this paper is Saskatchewan’s recorded historical wind speed data. Despite the excellent wind power potential, only 6.5% of the total electricity demand is currently supplied by wind power in Saskatchewan, Canada. This study paves the way for economical operation, planning, and optimization of Saskatchewan’s future wind power generation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here