
Neural Architecture Search and Hardware Accelerator Co-Search: A Survey
Author(s) -
Lukas Sekanina
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3126685
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Deep neural networks (DNN) are now dominating in the most challenging applications of machine learning. As DNNs can have complex architectures with millions of trainable parameters (the so-called weights), their design and training are difficult even for highly qualified experts. In order to reduce human effort, neural architecture search (NAS) methods have been developed to automate the entire design process. The NAS methods typically combine searching in the space of candidate architectures and optimizing (learning) the weights using a gradient method. In this paper, we survey the key elements of NAS methods that – to various extents – consider hardware implementation of the resulting DNNs. We classified these methods into three major classes: single-objective NAS (no hardware is considered), hardware-aware NAS (DNN is optimized for a particular hardware platform), and NAS with hardware co-optimization (hardware is directly co-optimized with DNN as a part of NAS). Compared to previous surveys, we emphasize the multi-objective design approach that must be adopted in NAS and focus on co-design algorithms developed for concurrent optimization of DNN architectures and hardware platforms. As most research in this area deals with NAS for image classification using convolutional neural networks, we follow this trajectory in our paper. After reading the paper, the reader should understand why and how NAS and hardware co-optimization are currently used to build cutting-edge implementations of DNNs.