
CN-Motifs Perceptive Graph Neural Networks
Author(s) -
Fan Zhang,
Tian-Ming Bu
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3126417
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Graph neural networks (GNNs) have been the dominant approaches for graph representation learning. However, most GNNs are applied to homophily graphs and perform poorly on heterophily graphs. Meanwhile, these GNNs fail to directly capture long-range dependencies and complex interactions between 1-hop neighbors when generating node representations by iteratively aggregating directly connected neighbors. In addition, structural patterns, such as motifs which have been established as building blocks for graph structure, contain rich topological and semantical information and are worth studying further. In this paper, we introduce the common-neighbors based motifs, which we called CN-motifs, to generalize and enrich the definition of structural patterns. We group the 1-hop neighbors and construct a high-order graph according to CN-motifs, and propose CN-motifs Perceptive Graph Neural Networks (CNMPGNN), a novel framework which can effectively resolve problems mentioned above. Notably, by making full use of structural patterns, our model achieves the state-of-the-art results on several homophily and heterophily datasets.