z-logo
open-access-imgOpen Access
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
Author(s) -
Woonghee Lee,
Jaeyoung Lee,
Younghoon Kim
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3126345
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Missing values are very prevalent in real world; they are caused by various reasons such as user mistakes or device failures. They often cause critical problems especially in medical and healthcare application since they can lead to incorrect diagnosis or even cause system failure. Many of recent imputation techniques have adopted machine learning-based generative methods such as generative adversarial networks (GANs) to deal with missing values in medical data. They are, however, incapable of reproducing realistic time-series signals preserving important latent features such as sleep stages that are important context in many medical applications using electroencephalogram (EEG). In this study, we propose a novel GAN-based technique generating realistic EEG signal sequences which are not only shown natural but also correctly classified with sleep stages by implanting the latent features in the synthetic sequence. By experiments, we confirm that our model generates not only more realistic EEG signals than a recent GAN-based model but also preserve auxiliary information such as sleep stages. Furthermore, we demonstrate that existing machine learning methods based on EEG data still work well without sacrificing performance using the imputed data by using our method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here