
A New Method for Designing Lightweight S-Boxes With High Differential and Linear Branch Numbers, and its Application
Author(s) -
Hangi Kim,
Yongjin Jeon,
Giyoon Kim,
Jongsung Kim,
Bo-Yeon Sim,
Dong-Guk Han,
Hwajeong Seo,
Seonggyeom Kim,
Seokhie Hong,
Jaechul Sung,
Deukjo Hong
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3126008
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Bit permutations are efficient linear functions often used for lightweight cipher designs. However, they have low diffusion effects, compared to word-oriented binary and maximum distance separable (MDS) matrices. Thus, the security of bit permutation-based ciphers is significantly affected by differential and linear branch numbers (DBN and LBN) of nonlinear functions. In this paper, we introduce a widely applicable method for constructing S-boxes with high DBN and LBN. Our method exploits constructions of S-boxes from smaller S-boxes and it derives/proves the required conditions for smaller S-boxes so that the DBN and LBN of the constructed S-boxes are at least 3. These conditions enable us to significantly reduce the search space required to create such S-boxes. Using the unbalanced-Bridge and unbalanced-MISTY structures, we develop a variety of new lightweight S-boxes that provide not only both DBN and LBN of at least 3 but also efficient bitsliced implementations including at most 11 nonlinear bitwise operations. The new S-boxes are the first that exhibit these characteristics.