z-logo
open-access-imgOpen Access
On the Modeling of Microstrip Lines Loaded With Dumbbell Defect-Ground-Structure (DB-DGS) and Folded DB-DGS Resonators
Author(s) -
Lijuan Su,
Jonathan Munoz-Enano,
Paris Velez,
Jesus Martel,
Francisco Medina,
Ferran Martin
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3125775
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper presents a lumped-element equivalent circuit model of microstrip lines loaded with dumbbell defect-ground-structure (DB-DGS) resonators, etched in the ground plane. The model is valid for ordinary (i.e., unfolded) DB-DGSs, as well as for folded DB-DGSs with an arbitrary aperture angle and relative orientation between the line and the resonator. It is shown that in folded, or partially folded, DB-DGS resonators both magnetic and electric coupling between the line and the resonator should be considered, except for a particular DB-DGS orientation, namely, the one where the symmetry plane of the particle (a magnetic wall) is orthogonal to the line axis. In this case, the particle is exclusively excited by the electric field generated by the line. It is also shown that the circuit model of a microstrip line loaded with an unfolded DB-DGS resonator transversally oriented to the line can be derived from the general model by considering the effects of opening the particle, i.e., a reduction of the electric coupling. In the extreme situation where the DB-DGS is completely opened (unfolded), the electric coupling vanishes, and the particle is exclusively driven by the magnetic field generated by the line. This effect is taken into account in the model by considering that the capacitance between the line and the inner metallic region of the folded, or partially folded, DB-DGS depends on the aperture angle of the particle, and it is null when the particle is unfolded. The models are validated by parameter extraction and comparison of the circuit responses with the responses inferred by electromagnetic simulation and measurement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here