z-logo
open-access-imgOpen Access
STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM
Author(s) -
Van-Tinh Nguyen,
Quang-Kien Trinh,
Renyuan Zhang,
Yasuhiko Nakashima
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3125685
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper proposes an in-memory binary spiking neural network (BSNN) based on spin-transfer-torque magnetoresistive RAM (STT-MRAM). We propose residual BSNN learning using a surrogate gradient that shortens the time steps in the BSNN while maintaining sufficient accuracy. At the circuit level, presynaptic spikes are fed to memory units through differential bit lines (BLs), while binarized weights are stored in a subarray of nonvolatile STT-MRAM. When the common inputs are fed through BLs, vector-to-matrix multiplication can be performed in a single memory sensing phase, hence achieving massive parallelism with low power and low latency. We further introduce the concept of a dynamic threshold to reduce the implementation complexity of synapses and neuron circuitry. This adjustable threshold also permits a nonlinear batch normalization (BN) function to be incorporated into the integrate-and-fire (IF) neuron circuit. The circuitry greatly improves the overall performance and enables high regularity in circuit layouts. Our proposed netlist circuits are built on a 65-nm CMOS with a fitted magnetic tunnel junction (MTJ) model for performance evaluation. The hardware/software co-simulation results indicate that the proposed design can deliver a performance of 176.6 TOPS/W for an in-memory computing (IMC) subarray size of $1\times 288$ . The classification accuracy reaches 97.92% (83.85%) on the MNIST (CIFAR-10) dataset. The impacts of the device non-idealities and process variations are also thoroughly covered in the analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here