z-logo
open-access-imgOpen Access
OpenPosLib: A Library to Achieve Centimetric Geo-Spatial Positioning on a Budget
Author(s) -
Lionel Metong,
Sebastien Strebelle,
Fabien Duchene,
Axel Legay,
Ramin Sadre
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3125496
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Positioning systems can be found everywhere, from the navigation system of a car to the smart watch that tracks the running performances of its wearer. With the generalization of positioning systems, new use cases have begun to emerge that require or could benefit from increased accuracy. While the technology has been detailed in the literature for several years, the deployment of positioning techniques at the centimeter level has proved challenging. In this paper we propose OpenPosLib, an open source library that aims to fill the gap between all the components needed to achieve a centimetric accuracy and the user-facing application. Our objective is to remove most of the complexity needed to obtain centimetric accuracy from the developer so as to enable end-users to reap the benefits of more applications that leverage centimetric accuracy. Our results show that when coupled with inexpensive hardware, OpenPosLib enables users to get centimetric precision on a budget.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here