z-logo
open-access-imgOpen Access
Unit Module-Based Convergence Acceleration for Topology Optimization Using the Spatiotemporal Deep Neural Network
Author(s) -
Younghwan Joo,
Yonggyun Yu,
In Gwun Jang
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3125014
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This study proposes a unit module-based acceleration method for 2-D topology optimization. For the purpose, the first-stage topology optimization is performed until the predefined iteration. After a whole design domain is divided into a set of unit modules, information on the spatiotemporal characteristics of intermediate designs and a filtering radius is used to separately predict a near-optimal design of each unit module through a trained long short-term memory (convLSTM) network. Then, in the second-stage topology optimization, a combined near-optimal design of a whole design domain is used as an initial design to determine the optimized design in a more efficient way. To train a convLSTM network, a history of intermediate designs is obtained under a randomly generated boundary condition of a unit module. The filtering radius is also used as the training data to reflect the geometric features affected by a filtering process. For four examples with different design domains and boundary conditions, the proposed method successfully provides the accelerated convergence up to 6.09 with a negligible loss of accuracy less than 1.12% error. These numerical results also demonstrate that the proposed unit module-based approach achieves a scalable convergence acceleration at a design domain of an arbitrary size (or resolution).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here