
ChoroidNET: A Dense Dilated U-Net Model for Choroid Layer and Vessel Segmentation in Optical Coherence Tomography Images
Author(s) -
Tin Tin Khaing,
Takayuki Okamoto,
Chen Ye,
Md. Abdul Mannan,
Hirotaka Yokouchi,
Kazuya Nakano,
Pakinee Aimmanee,
Stanislav S. Makhanov,
Hideaki Haneishi
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3124993
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Understanding the changes in choroidal thickness and vasculature is important to monitor the development and progression of various ophthalmic diseases. Accurate segmentation of the choroid layer and choroidal vessels is critical to better analyze and understand the choroidal changes. In this study, we develop a dense dilated U-Net model (ChoroidNET) for segmenting the choroid layer and choroidal vessels in optical coherence tomography (OCT) images. The performance of ChoroidNET is evaluated using an OCT dataset that contains images with various retinal pathologies. Overall Dice coefficient of 95.1 ± 0.4 and 82.4 ± 2.4 were obtained for choroid layer and vessel segmentation, respectively. Comparisons show that among state-of-the-art models, ChoroidNET, which produces results that are consistent with ground truths, is the most robust segmentation framework.