z-logo
open-access-imgOpen Access
A Selected Deep Learning Cancer Prediction Framework
Author(s) -
Nadia G. Elseddeq,
Sally M. Elghamrawy,
Mofreh M. Salem,
Ali I. Eldesouky
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3124889
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Deep learning (DL) algorithms are crucial for predicting various diseases because they can analyze a large amount of healthcare data within a short prediction time. One of these diseases is cancer, which causes one out of six deaths worldwide. Many researchers have adopted predictive frameworks such as machine learning and DL to predict cancer prognosis, in addition to the probability of its recurrence, progression, and the patients’ survival estimation. Currently, all stakeholders are interested in the accuracy of cancer prognosis prediction. This study selected a framework within high accuracy and short prediction time from three DL frameworks for improving the performance of cancer prognosis prediction. This prediction requires a quick and high-accuracy optimizer, so we propose a binary version of the continuous AC-parametric whale optimization algorithm. This version is built on S-shaped transfer functions to identify the minimal optimal subset of features and maximize the classification accuracy. These frameworks proposed have the following forms: the first is a Feed-Forward Neural Network (FFNN) in which the input is the optimal set of feature selection. The second is an optimized parameter FFNN. The third is composed of a feature selection layer in which the best subset of selected features is for use as inputs in the optimized FFNN. We compared these frameworks using a comparative study. Our results show that, under all conditions, the third framework is superior to the others with an average accuracy of 100%, whereas the first and second frameworks achieved 94.97% and 93.12% accuracy, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here