z-logo
open-access-imgOpen Access
Dual Water Choices: The Assessment of the Influential Factors on Water Sources Choices Using Unsupervised Machine Learning Market Basket Analysis
Author(s) -
Tiyasha Tiyasha,
Suraj Kumar Bhagat,
Firaol Fituma,
Tran Minh Tung,
Shamsuddin Shahid,
Zaher Mundher Yaseen
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3124817
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
An unsupervised machine learning model of association rule known as market basket analysis is proposed in this study to analyze the influence of various socio-economic factors on the choice of the water source. Data of 51 socio-economic factors collected from 295 individuals living in 65 households in Ambo city in the Oromia region of Ethiopians were used for this purpose. The results revealed (i) 64% of the family preferred multiple water sources (i.e., public tap and river water), (ii) the water was collected females in 92% of the households, and (iii) majority of people preferred bathing and laundering in the river (support = 32% and confidence = 87%). Direct utilization of river water is not a preferable choice for the user since it may lead to severe health issues and cause water pollution from bathing and laundering. Education and monthly income have a significant impact on the choices of water sources. Local management authorities can improve sanitation and public health management using the results obtained in the study. The paper only gives a glimpse of the important factors that should be considered for improving the way of life for the underdeveloped areas of the world using advanced machine learning techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here