z-logo
open-access-imgOpen Access
Numerical Study of the Aerodynamic Interference of Rotors Imposed on Fuselage for a Quadcopter
Author(s) -
Yifei Zhu,
Defu Lin,
Li Mo,
Peijian Lv,
Jianchuan Ye
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3124507
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper investigates the transient aerodynamic interference of rotors imposed on fuselage for a quadcopter through Computational Fluid Dynamics (CFD) simulations. The numerical study of transient effects due to rotor rotation is enabled by sliding mesh which defines the rotation domains encompassing rotor blades. The results show that the interference effects of rotor change the aerodynamic forces of the fuselage, causing about 67% in-crease in lift, 13% increase in drag, and 90% increase in pitching up moment on average. The variations of fuselage lift are associated with the pressure distribution changes due to rotors rotation, the high-pressure areas and low-pressure areas over the rotor projects on the arms of the quadcopter causing periodical abrupt changes on the lift, drag and pitching moment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here