z-logo
open-access-imgOpen Access
Polarization Aberration of a Non-Rotationally Symmetric Optical System With Freeform Surfaces
Author(s) -
Yilan Zhang,
Haodong Shi,
Huilin Jiang
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3122288
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Owing to the wide application of freeform surfaces in off-axis optical systems with large apertures, large fields of view, and long focus distances, the polarization effects caused by non-rotationally symmetrical surfaces have a significant impact on the system’s polarization imaging quality and measurement accuracy. In this study, considering the problem of the aforementioned polarization effects, a polarization aberration analysis method based on the Jones notation using the fringe Zernike polynomials freeform surface is proposed. A full-field polarization aberration analysis model of a non-rotationally symmetric reflection optical system with a freeform surface is constructed. The effect of freeform surfaces on the distribution characteristics of the proposed model is demonstrated. Through the full-field polarization ray tracing of the field-of-view off-axis optical system, three kinds of polarization aberrations, comprising phase aberration, retardance, and diattenuation are obtained, after the introduction of the Zernike polynomial freeform surface. Finally, a full-field polarization aberration analysis is carried out for a wide-field off-axis three-reflection optical system with freeform surfaces. The results show that the phase aberration of a non-rotationally symmetric optical system with freeform surfaces is directly related to the freeform surface shape. The full-field of view distribution of the retardance and diattenuation caused by the free-form surface is 52.5% of the overall retardance and diattenuation distribution of the system. The proposed method will be of great significance for improving the accuracy of systems in deep-space telescopes and lithography objectives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom