z-logo
open-access-imgOpen Access
ContexedNet: Context–Aware Ear Detection in Unconstrained Settings
Author(s) -
Ziga Emersic,
Diego Susanj,
Blaz Meden,
Peter Peer,
Vitomir Struc
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3121792
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Ear detection represents one of the key components of contemporary ear recognition systems. While significant progress has been made in the area of ear detection over recent years, most of the improvements are direct results of advances in the field of visual object detection. Only a limited number of techniques presented in the literature are domain–specific and designed explicitly with ear detection in mind. In this paper, we aim to address this gap and present a novel detection approach that does not rely only on general ear (object) appearance, but also exploits contextual information, i.e., face–part locations, to ensure accurate and robust ear detection with images captured in a wide variety of imaging conditions. The proposed approach is based on a Contex t–aware ${E}$ ar ${D}$ etection Net work (ContexedNet) and poses ear detection as a semantic image segmentation problem. ContexedNet consists of two processing paths: i) a context–provider that extracts probability maps corresponding to the locations of facial parts from the input image, and ii) a dedicated ear segmentation model that integrates the computed probability maps into a context–aware segmentation-based ear detection procedure. ContexedNet is evaluated in rigorous experiments on the AWE and UBEAR datasets and shown to ensure competitive performance when evaluated against state–of–the–art ear detection models from the literature. Additionally, because the proposed contextualization is model agnostic, it can also be utilized with other ear detection techniques to improve performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here