z-logo
open-access-imgOpen Access
Real-Time Road Curb and Lane Detection for Autonomous Driving Using LiDAR Point Clouds
Author(s) -
Jing Huang,
Pallab K. Choudhury,
Song Yin,
Lingyun Zhu
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3120741
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The commercialization of automated driving vehicles promotes the development of safer and more efficient autonomous driving technologies including lane marking detection strategy, which is considered to be the most promising feature in environmental perception technology. To reduce the tradeoff between time consumption and detection precision, we propose a real-time lane marking detection method by using LiDAR point clouds directly. A constrained RANSAC algorithm is applied to select the regions of interest and filter the background data. Further, a road curb detection method based on the segment point density is also proposed to classify the road points and curb points. Finally, an adaptive threshold selection method is proposed to identify lane markings. In this investigation, five datasets are collected from different driving conditions that include the straight road, curved road, and uphill, to test the proposed method. The proposed method is evaluated under different performance metrics such as Precision, Recall, Dice, Jaccard as well as the average detection distance and computation time for the five datasets. The quantitative results show the efficiency and feasibility of this proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here