z-logo
open-access-imgOpen Access
Combining a Fully Connected Neural Network With an Ensemble Kalman Filter to Emulate a Dynamic Model in Data Assimilation
Author(s) -
Manhong Fan,
Yulong Bai,
Lili Wang,
Lin Ding
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3120482
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Using neural network technology, dynamic characteristics can be learned from model output or assimilation results to train the model, which has greatly progressed recently. A data-driven data assimilation method is proposed by combining fully connected neural network with ensemble Kalman filter to emulate dynamic models from sparse and noisy observations. First, the hybrid model couples the original dynamic model with the surrogate model. The surrogate model is learned from model forecast values and assimilation results, and its performance is verified using the training accuracy/loss and the validation accuracy/loss at different training times. Second, the assimilation process includes a “two-stage” procedure. Stage 0 generates the training sets and trains the surrogate model. Then, the hybrid model is used for the next assimilation period in Stage 1. Finally, several numerical experiments are conducted using the Lorenz-63 and Lorenz-96 models to demonstrate that the proposed approach is better than the ensemble Kalman filter in different model error covariances, observation error covariances, and observation time steps. The proposed approach has also been applied to sparse observations to improve assimilation performance. This hybrid model is restricted to the form of the ensemble Kalman filter. However, the basic strategy is not restricted to any particular version of the Kalman filter.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here