
SpecMCTS: Accelerating Monte Carlo Tree Search Using Speculative Tree Traversal
Author(s) -
Juhwan Kim,
Byeongmin Kang,
Hyungmin Cho
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3120384
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Monte Carlo Tree Search (MCTS) algorithms show outstanding strengths in decision-making problems such as the game of Go. However, MCTS requires significant computing loads to evaluate many nodes in the decision tree to make a good decision. Parallelizing MCTS node evaluations is challenging because MCTS is a sequential process that each round of tree traversal depends on the previous node evaluations. In this work, we present SpecMCTS , a new approach for accelerating MCTS by speculatively traversing the search tree. Many MCTS applications, such as AlphaGo Zero, use a deep neural network (DNN) model to evaluate the tree nodes during the search. SpecMCTS uses a pair of DNN models, the speculation model and the main model . The faster (but less accurate) speculation model accelerates the sequential tree search while the more accurate main model improves the decision quality. SpecMCTS accelerates MCTS for the game of Go by up to $2.09\times {}$ on the NVIDIA T4 GPU. This performance improvement can be translated into a better decision quality by performing a larger number of tree traversals within the time limit. For a fixed decision time, SpecMCTS shows stronger gameplay (higher win rate) than the original sequential MCTS and state-of-the-art MCTS parallelization approaches.