z-logo
open-access-imgOpen Access
Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning
Author(s) -
Helong Yu,
Jiawen Liu,
Chengcheng Chen,
Ali Asghar Heidari,
Qian Zhang,
Huiling Chen,
Majdi Mafarja,
Hamza Turabieh
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3120379
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here