
Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning
Author(s) -
Helong Yu,
Jiawen Liu,
Chengcheng Chen,
Ali Asghar Heidari,
Qian Zhang,
Huiling Chen,
Majdi Mafarja,
Hamza Turabieh
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3120379
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.