z-logo
open-access-imgOpen Access
Target Detection Through Riemannian Geometric Approach With Application to Drone Detection
Author(s) -
Hossein Chahrour,
Richard M. Dansereau,
Sreeraman Rajan,
Bhashyam Balaji
Publication year - 2021
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2021.3105594
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Radar detection of small drones in presence of noise and clutter is considered from a differential geometry viewpoint. The drone detection problem is challenging due to low radar cross section (RCS) of drones, especially in cluttered environments and when drones fly low and slow in urban areas. This paper proposes two detection techniques, the Riemannian-Brauer matrix (RBM) and the angle-based hybrid-Brauer (ABHB), to improve the probability of drone detection under small sample size and low signal-to-clutter ratio (SCR). These techniques are based on the regularized Burg algorithm (RBA), the Brauer disc (BD) theorem, and the Riemannian mean and distance. Both techniques exploit the RBA to obtain a Toeplitz Hermitian positive definite (THPD) covariance matrix from each snapshot and apply the BD theorem to cluster the clutter-plus-noise THPD covariance matrices. The proposed Riemannian-Brauer matrix technique is based on the Riemannian distance between the Riemannian mean of clutter-plus-noise cluster and potential targets. The proposed angle-based hybrid-Brauer technique uses the Euclidean tangent space and the Riemannian geodesical distances between the Riemannian mean, the Riemannian median and the potential target point. The angle at the potential target on the manifold is computed using the law of cosines on the manifold. The proposed detection techniques show advantage over the fast Fourier transform, the Riemannian distance-based matrix and the Kullback-Leibler (KLB) divergence detectors. The validity of both proposed techniques are demonstrated with real data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here