z-logo
open-access-imgOpen Access
Feasibility of Plasmonic Circuits in Nanophotonics
Author(s) -
Mitsuo Fukuda,
Shinya Okahisa,
Yuta Tonooka,
Masashi Ota,
Takuma Aihara,
Yasuhiko Ishikawa
Publication year - 2020
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2020.3013605
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The configuration of plasmonic circuits comprising SiO2-load waveguides and their characteristics within the nanophotonic range are presented and compared with electronic and lightwave circuits in 1300 and 1550 nm wavelength bands. In the nanophotonic range of less than 1 μm, plasmonic signals propagate in narrow waveguides with cross-sections less than a few hundred square nanometers, while lightwaves exhibit only slight propagation in high-refractive-index (i.e., Si) waveguides owing to the transmission loss increase via the cut-off wavelength of the waveguide. Additionally, the plasmonic signal transmission loss is lower than that of electric signals for transmission lengths less than a few hundred micrometers. During signal transmission, a narrow spectral width of the plasmonic signals is needed to suppress any signal shape deformation induced by the frequency dependence of the collective oscillation of electrons in plasmonic signals. In the nanophotonic range, the degree of integration for plasmonic circuits is not governed by the transmission loss but by the leak distance of the plasmonic signal optical field from the side-walls of the waveguides and components. Employing a metal/insulator/metal structure in plasmonic circuits is a valid way to heighten the integration density, and its effectiveness is numerically and experimentally confirmed in a plasmonic multiplexer less than 1 μm in length. On the basis of these results, the feasibility of plasmonic circuits is discussed and it can be said that plasmonic circuits including waveguides and components are promising photonic techniques for signal transmission in the nanophotonic range.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom