
Decoupling Networks and Super-Quadratic Gains for RIS Systems with Mutual Coupling
Author(s) -
Dominik Semmler,
Josef A. Nossek,
Michael Joham,
Benedikt Bock,
Wolfgang Utschick
Publication year - 2025
Publication title -
ieee transactions on wireless communications
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 2.01
H-Index - 223
eISSN - 1558-2248
pISSN - 1536-1276
DOI - 10.1109/twc.2025.3592045
Subject(s) - communication, networking and broadcast technologies , computing and processing , signal processing and analysis
We propose decoupling networks for the reconfigurable intelligent surface (RIS) array as a solution to benefit from the mutual coupling between the reflecting elements. In particular, we show that when incorporating these networks, the system model reduces to the same structure as if no mutual coupling is present. Hence, all algorithms and theoretical discussions neglecting mutual coupling can be directly applied when mutual coupling is present by utilizing our proposed decoupling networks. For example, by including decoupling networks, the channel gain maximization in RIS-aided single-input single-output (SISO) systems does not require an iterative algorithm but is given in closed form as opposed to using no decoupling network. In addition, this closed-form solution allows to analytically analyze scenarios under mutual coupling resulting in novel connections to the conventional transmit array gain. In particular, we show that super-quadratic (up to quartic) channel gains w.r.t. the number of RIS elements are possible and, therefore, the system with mutual coupling performs significantly better than the conventional uncoupled system in which only squared gains are possible. We consider diagonal as well as beyond diagonal (BD)-RISs and give various analytical and numerical results, including the inevitable losses at the RIS array. In addition, simulation results validate the superior performance of decoupling networks w.r.t. the channel gain compared to other state-of-the-art methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom